Effector proteins of rust fungi
نویسندگان
چکیده
Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.
منابع مشابه
Using Hierarchical Clustering of Secreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi
Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that...
متن کاملDuplications and losses in gene families of rust pathogens highlight putative effectors
Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of dis...
متن کاملردیابی و تکثیر ژن های اثرگذار حامل دومین LysMدر ژنوم قارچ F. oxysporum f. sp. lycopersici
During the infection- while the xylem is colonized by the F. oxysporum f. sp. Lycopersici (Fol)- several effector proteins have been secreted into the xylem that suppress the plant’s defense response and enable parasitic colonization. So far, 14 effector proteins have been reported in Fol. However, there are no identified domains in their sequences. LysM effector proteins were identified ...
متن کاملRust Secreted Protein Ps87 Is Conserved in Diverse Fungal Pathogens and Contains a RXLR-like Motif Sufficient for Translocation into Plant Cells
BACKGROUND Effector proteins of biotrophic plant pathogenic fungi and oomycetes are delivered into host cells and play important roles in both disease development and disease resistance response. How obligate fungal pathogen effectors enter host cells is poorly understood. The Ps87 gene of Puccinia striiformis encodes a protein that is conserved in diverse fungal pathogens. Ps87 homologs from a...
متن کاملA Small Cysteine-Rich Protein from the Asian Soybean Rust Fungus, Phakopsora pachyrhizi, Suppresses Plant Immunity
The Asian soybean rust fungus, Phakopsora pachyrhizi, is an obligate biotrophic pathogen causing severe soybean disease epidemics. Molecular mechanisms by which P. pachyrhizi and other rust fungi interact with their host plants are poorly understood. The genomes of all rust fungi encode many small, secreted cysteine-rich proteins (SSCRP). While these proteins are thought to function within the ...
متن کامل